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GRAY BODIES AND FILLED WITH A RADIATION-ABSORBING MEDIUM
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A solution is presented for the problem of radiative heat exchange be-
tween a gas and three gray swrfaces in a closed space.

The literature {1, 2] cites the solution for the pro-
blem of radiative heat exchange in a closed system
consisting of three gray surfaces. The system is fil-
led with a radiation transparent (diathermic) medium.

Let us consider radiative heat exchange in a closed
space congisting of three gray surfaces ¥y, F;, and F3,
when the angular coefficients ¢y; # 0, @y # 0, and @33 =
# 0. Within the space there is a radiation-absorbing
medium (gas) exhibiting a uniform temperature through-
out its entire volume. We regard the gas asgray, i.e.,
capable of absorbing radiant energy onall wavelengths,
exhibiting no reflectance, but transparent to some ex-
tent for all wavelengths. We assume that the emissi-
vity of the gas is different for the various radiation
directions, and we denote it in the following manner:

gi2 = g2, eld = gdl, e = e, gl!, e, 8B

The subscript 0 for the & denotes that the emissi-
vity pertains to a gaseous medium, whereas the super-
script shows the number of surfaces between which
the radiation beam moves. We denote the gas temper-
ature by T¢, while the temperature and emissivity of
the surfaces Fy, Fy, and Fs, respectively, are denoted as
T, Ty, Tz and €y, €5, €. We assume that Ty > T; >
> Tz > Tg.

The results of the exchange of heat betwen indivi~
dual surfaces in the presence of a gas and with the
participation of a third surface are expressed by the
following equations [3]:

Qo = Fignen (&, — Ey) = Fyopen(E1— &), (1)

Qs = Fypugtus (1 — Eg) = Fy@gieq (E1 — Ey), (2)

Qos = Fy @ogtas (Ey — Eg) = Fy @ay8a (B, — Eg).  (3)
The results of the exchange of heat between the gas

and each of the surfaces, with the participation of two
other surfaces, are represented by the functions [3]:

Qpy o= Fien (Eo - El)v (4)
Qg = Fren By — Ey), (5)
Qo == Fyegy (B, — Ey), (6)

where

56 7, ¥ G, 1,2 3
=4 -2 =Y, * g 3
e b

E; is the specific emissive power of an absolute black
body at the temperature T,; n corresponds to the
notation of the gas or surface; g9 = €91, €43 = €34, €95 =
= g3p are the general emissivities for the particular
systems consisting of two surfaces. The subscript with
the ¢ indicates the number of surfaces making up the
system; g, (n =1, 2,3) is the general emissivity of
the gas-surface system.

To solve the formulated problem, we must deter-
mine the emissivities of the particular systems ey,
€13, €3, €41s €0z, and €g-

The solution of the problems of radiative heat ex-
change can be achieved algebraically if in a system of
p surfaces the following condition is satisfied [4—6]:

Ppn—k = Pn—p (n» k= 1,2 3 ..., ,0), (7)

which indicates that the angular coefficient from any
unit area of surfaces ¥y, to F is equal to the mean
angular coefficient from Fy to Fj.. As an example of
systems for which (7) is satisfied we cite a sphere
within a sphere, with a common center, or two infin-
itely long cylinders with a common axis. If (7) is not
satisfied, we are forced to deal with integral equations.
We assume that (7) is satisfied for our system.

We use the method described in {7] to solve the
problem; according to this method we derive the energy
balance for each of the three surfaces, assuming con-
ditionally for the moment that the surface ¥, has a
temperature T =0, while the temperature of the re-
maining two surfaces and that of the gas are equal to
absolute zero. As a result we have an algebraic sys-
tem of three equations with three unknowns:

F 3
( Hydl — 71‘> Ry + Huodl? Ry + Hygdl? Ry =
1
= —‘Hudll)l E1s
12 : 99 F, 23
ledo 1R1 + (Hmd A )1Rz + Hz3d0 1R3:
N , (8)
= "‘Hmd<1)281»
F
Hagdl? (R, + Hypd® (R, + ( Hopd — 7’—) Ry =
3
== Hlad(lla €1 /
where
R, = Eretl (g gy (9)
E,
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n is the surface number; E,qff is the density of the
total (effective) heat flux from the surface Fy, i.e.,
the intrinsic and the reflected flow; ;R is the rela-
tive density of the total heat flux from the surface F,.
The left superscript indicates the original radiation
source, while the right subscript denotes the surface
from which the effective heat flux emanates; H denotes
the equivalent (mutual) surface in the exchange of heat
between two surfaces: Hyy = Fio; Hyp= Fipp = Fz(p21
etc.; dél =1~ sou, d&z =1~ 8012, etc., denotes the
transparency of the gas on motion of the beam in va-
rious directions according to the superscript; r;=1 —
— &, rp3=1— €y, and rg3 = 1 — &5 are the reflectances
‘of the surfaces F;, ¥y, and F;.

The emissivity £ is determined from the equation

F P1o8y1p = Fz”jile. (10)

2

In the left-hand part of (10) we find the result of the
heat exchange, measured in units of E,;, between F,
and Fy, derived from (1) when T, = 0. In the right~
hand part the quantity F; = jRo/r; represents the rela-
tive heat flux incident on the surface F,, since the
magnitude of the relative density ;R; of the total heat
flux from Fy when T9 =Ty = T = 0 is equal to the rel~
ative density of the reflected heat flux from F, alone.
The product of F(;Rs/1s) by &; shows the relative heat
flux absorbed by the surface F; as a result of heat ex~
change. ~

From (10) for £;3 we obtain

ang_
Fipun

€1p = R (11)

The quantity £, determined from (11) according to
the adopted working model in which Ty = Ty =T3 =0
will also be valid for the case in which the temper-
atures Ty, Ty, and Tj are different from zero, since
€13 is a function of the physical and geometric con-
stants and independent of temperature. Equations
analogous to (11) are also derived for the determina~-
tion of g3 and e43: :

€13 = F3 % 1Rs (12)
Fioprs

€23 = "Fs 2 Ry, (18)
292’3

where R3 = sEzeff/E is the relative density of the
total heat flux from F; under the condition that the
surface F, exhibits a temperature T, =0, and the
temperatures Ty = T3 =Ty = 0.

To determine ;R3 we compile a system of equations
analogous to (8) from which the quantity ;R; is deter-
mined. The expressions for ;K; and R3 are determined
from (8).

Having substituted the expressions for (R, iRs3, and
sR3, respectively, into (11), (12), and (13), we obtain
the final expressions for the determination of €y, £13,
and €93

ey, = (‘anak [Pne dgk (Pmm dg" fm— 1) —

INZHENERNO-FIZICHESKII ZHURNAL

= Cam Py, dgmd('lnk fm]) X (A )-1, (14)

where nk represents a combination of the three ele-
ments 1, 2, and 3, denoting the surface numbers, two
each, while m is the number of the remaining surface
not included in the combination nk;

A= (‘Pudél rn—1) (%2‘132’2— 1) (@sa dg3r3 — 1)+

o 2012 PesPar do” A Ao rytyry — PagPaz (dB)? X
X (1, do'ry — 1) rary —
— P15Pa1 (@’)? (P2 i’y — ) riry —
— Qua (40 (P 473 — 1) a7 (15)

According to [7], to determine the emissivities gy,
€93, and &g3 we can make up the following system of equa-
tions based on the energy balance for each of the sur-
faces, if we assume that the gas has a temperature
Ty #0, with the surface temperatures equal to zero
(T1:T2 =T3 =0)2

. F
<Hndll — 71“) oRy + Hmd})2 R + Hlsd(l)s oRy= )
1
— _egqulpl’
H12d62 R+ H22d22 - Q oRe + H23d330 3=
ry r (16)
= _quuQFZa
Fo
Hlsdtl)a oRl + std%)s oR‘z + (H33d33 - Ta) ORS’_‘
3
= ‘quusF:; )

where (Rn = ¢Epefi/E¢ (0 = 1,2, 3) is the relative den-
sity of the total (effective) heat flux from the surfaces
of the system in which the sole source of radiation is

a radiation-absorbing medium having the temperature
To =0, and T; = To = T3 = 0; g5, e§AU2 ¢BYUS ape

determined from the equations

s%qu"=(pnla’g‘ T Qe e (n=1, 2, 3), (17)
e§94D i the equivalent emissivity of the gas for the
radiation proceeding from the surface F, in all three
directions.

The equations for the determination of the emissi-
vities g¢1, €¢2, and &3 are found in analogy with (11),
(12), and (13):

En = -2 R, (n=1,2,3), (18)

where n is the surface number.

Having substituted into (18) the expressions for (Ry,
oR3, and¢R;3, determinedfrom (16), we derive a genera-
lized expressionfor the determinationof €1, &gy, and g¢3:

g )
fon = _.Z {,[q)mk Prm (dO k)z Tl =
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~(Pmm 45" T — 1) (@ d6°ry — 1)] €537
+ [‘andgm T'm (@ke ds* rp—~—1)—
— P Pim Ao i 1,ry] €S0
+ | Que B8 1 (P 45" 1 — 1) —

= CnmPrp dgm dglkrmrk} S%quk} . (19)

|
i

Here n =1, 2, 3 isthenumber of the surface for ming—

with the gas—a particular system for which we have
to determine the emissivity; m and k are the numbers
of the two remaining surfaces not included in the gas-
surface system. For example, ifn=1, m=2and k =
=3 ifn=2, m=1,k=8;ifn=3, m=1, k=2. As
before, A is calculated from (15).

Having substituted the derived expressions for &i,,
€13; €93, Eg1» €92, and gg3 from (14) and (19), respectively,
into (1), (2), (3) and (4), (5), (6), we can calculate the
results of the radiative heat exchange in a closed space
consisting of three gray bodies and filled with a radia-
tion~absorbing medium. The resulting solutions of (14}
and (19) for the emissivities of the systems are the
most general. The special cases can be derived from
them. For example, when the emissivity of the gas is

identical in all direction, i.e., eé’ = a%z = 533 =gff =

=g = 8%3 =gq, the solutions of (14) and (19) assume

the form

2
Eup = Entp [‘pnk dO (q)mm do rrn; 1) ~ Qum Pme dO rm] , (20)

where nk, as before, represents a combination of
three elements 1, 2, and 3, two each, while m is the
number of the surface not included in the combination
nk;

g8

8o = — rq)mk (Pkmd%fm"k‘
B

‘_"(cpmm dorm‘ I) (‘pkk do Ty — 1) +

F Qs Bl (Pra o, — 1) — D P dg’m’k +

+ Pk dork (q)mm dorm - 1) — Pam P dgrmrk} ’

245

egqu " = (Qn1 + Prr + Pna) & = &, (21)

since ¢n, * ¢py T @p; = 1 where n, m, and k are the
same as in the solution (19):

dy=1—¢,,
B = (g dgry — D (9o dgfs — 1) (Pag dofs — 1) +
+ 2015 Pag Pay Ao 71725 — P Pua Ao (Qry dory — 1) rafs —
— @13 Pay Ao (Paa dory — 1) 117y —
— @12 Pa1 Ao Qg dofs — 1) il (22)

If we assume that the medium in the system is
transparent to heat (for example, dry air), gl = eft =
= 883 = 832 = 663 = 8%3 = g9 = 0 and the resulting solu-
tions, by means of algebraic transformations, are
changed into the solution known from the literature
[1] for a system of three surfaces, with the system

filled with a radiation—-transparent medium.
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